

POLJOPRIVREDNI FAKULTET UNIVERZITET U NOVOM SADU PFNS DEPARIMAN ZA RATARSTVO I

A_gM_{net}⁺ INTERNATIONAL SUMMER SCHOOL IN AGROMETEOROLOGY AND CROP MODELLING 2017

Università degli studi FIRENZE

DISPAA

DIPARTIMENTO DI SCIENZE DELLE PRODUZIONI AGROALIMENTARI E DELL'AMBIENTE

Universität für Bodenkultur Wien

European Commission

DEPARTMENT FÜR WASSER-ATMOSPHÄRE-UMWELT

Horizon 2020

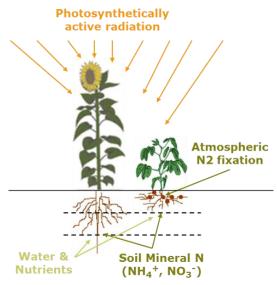
EUROPEAN UNION FUNDING

Summer School 2017

overview of models Modelling intercrops

Laurent BEDOUSSAC

ENSFEA, INRA UMR 1248 AGIR, Toulouse, France



Intercropping: definition and examples

- Simultaneous growth of two or more species in the same field for a significant period without necessarily sowing and harvesting them together (Willey 1979)
- Traditional practice more or less developed covering a wide range of systems
- Application of natural ecosystems ecology principles to a better use of resources in time and space and pest regulation

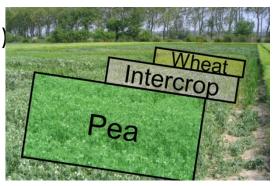
Annual crops

Pasture

Agroforestry

Trees & pasture

Trees & trees



Interests of intercrops for low input

Lots of references for cereal-legume intercrops

- Improve cereal grain quality (grain protein content)
 (Jensen 1996; Hauggaard-Nielsen &al 2001, 2009; Bedoussac & Justes 2010)
- Increase global yield (compared to low input sole crops) (Hauggaard-Nielsen &al 2001; Zhan &al 2010; Bedoussac & Justes 2010)
- Reduce weeds (compared to legume)
 (Hauggaard-Nielsen &al 2001; Corre-Hellou &al 2011)
- Potentially reduce pests (e.g.pea aphids) and diseases (Altieri 1999; Corre-Hellou and Crozat 2005; Ratnadass et al. 2012)
- Reduce the nitrate leaching risk (compared to sole legumes)
 (Hauggaard-Nielsen &al 2003, 2009; Bedoussac & Justes 2010)
- Increase yield stability (compared to sole crops) (hypothesis widely cited but no demonstration published)
- Increase or stabilize over years the farmer gross margin (Bedoussac 2009; Pelzer &al 2012)

But a lack of genericity

A need for modelling intercrops

Many levers to evaluate showing limits of experimental approaches

Ex: Wheat-Pea with 3 cultivars of each, 3 Nitrogen levels, 3 densities and 3 replicates → 243 plots

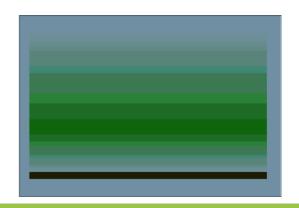
- Species and cultivars?
 The best intercrop is not mixing the best sole crops cultivars
- Sowing?
 Densities, Dates, Pattern (line, mix, strip...)
- Fertilization?
 Amount, Fractioning, N, P, K...
- Pest control?
 Weeds, insects, diseases,...
- Rotation and resiliency?
 Climate change,...

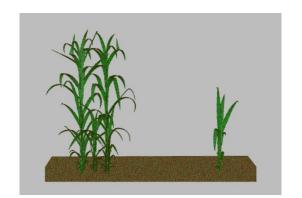
How to model intercrops & for which purpose?

Separated rows

Strip intercropping

Mixed on the row

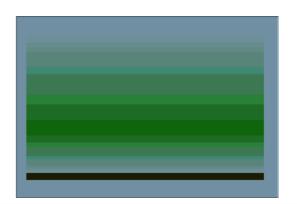

Two main complementary approaches


Crop models

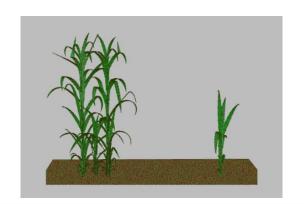
- The object simulated is the volume of vegetation
- Environment treated by analogy to a continuous medium mostly not homogeneous

Virtual plant models

- Integration from organ to plant and plant to stand
- Environment perceived at the level of the organ



Crop models vs virtual plant models


Crop models

- Aggregate representation
 Iimiting representation of processes such as genotypic differences
- Less suitable for describing heterogeneous stands
- Availability of relatively "complete" models

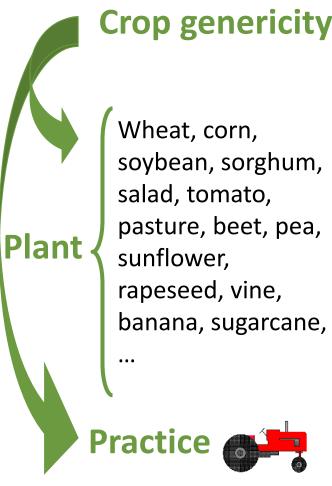
Virtual plant models

- Less aggregated representation
 → facilitating expression of
 knowledge but sensitive to
 missing knowledge
- Suitable for describing heterogeneous stands
- Development of models "underprocess"

The STICS Model: Origin and strategy

- First meeting design, in ECOSPACE project (1996):
- A single model for
 - Different crops
 - Remaining general, robust, simple, operational, flexible
- Must integrate knowledge of specialists and generalists
- Mechanistic soil-crop model
- Dynamic functioning of the thermal balance, radiative balance, budgets of water, C and N balances across crop cycle

STICS TEAM PROJECT: E. JUSTES, M. LAUNAY, S. BUIS, D. RIPOCHE + 15 SPECIALISTS



Global presentation of the STICS model

Conceptual modularity

Development

Foliar growth

Radiation interception

Biomass growth

Yield elaboration

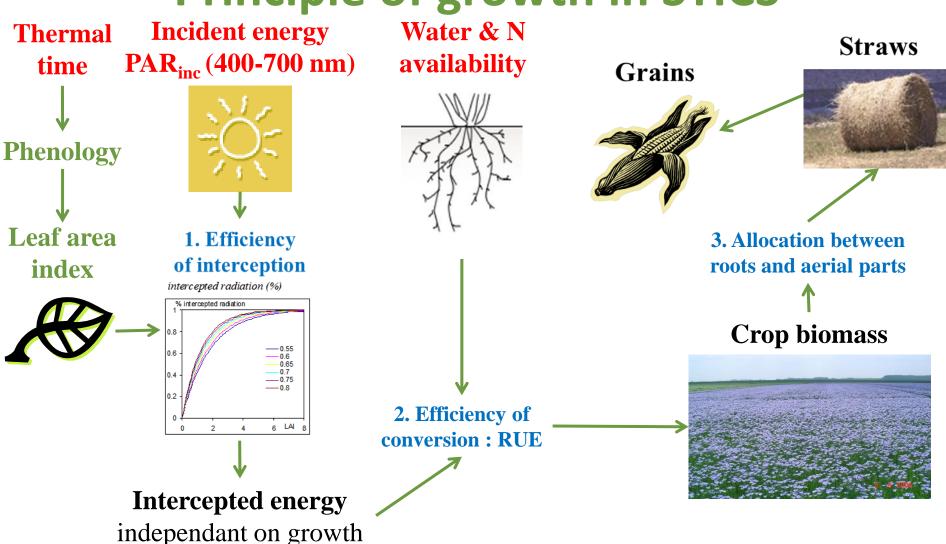
Root growth

Water transfers

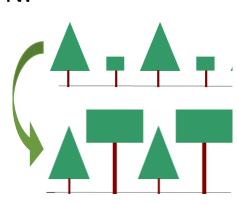
Nitrogen transfers

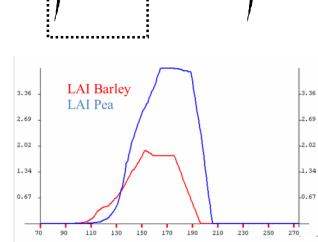
Management of technical interventions

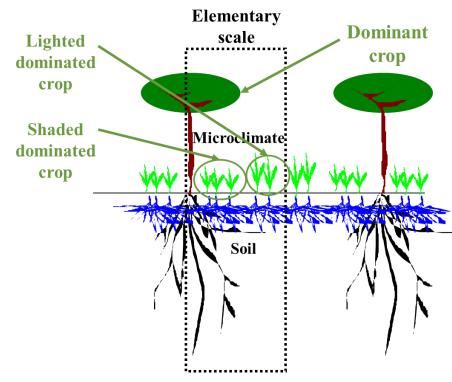
Brisson et al. (1998, 2002, 2003, 2008)



Principle of growth in STICS






Intercropping in STICS

- Only 2 crops
- Row pattern
- Variable inter-row distance
- Sowing & Harvest variable
- Competition for:
 - light, water & N
 =f(rate of root in depth & density/soil layer, LAI expansion, growth rate)
- Niche complementary for N:
 - N2 fixation=f(soil nitrate concentration)

FLORSYS, a virtual field model

Adapted from N. Colbach INRA

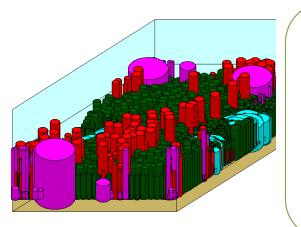
INPUTS

FLORSYS

OUTPUTS

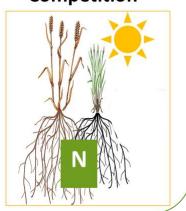
Pedoclimate

Cropping systems (Species/genotype, techniques)



Demography and seed production

Yield


1 species/genotype

= 1 combination of traits

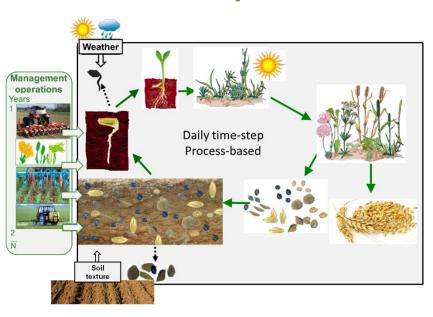
- -Phenology
- -Aboveground morphology
- -Belowground morphology
- -Resource acquisition

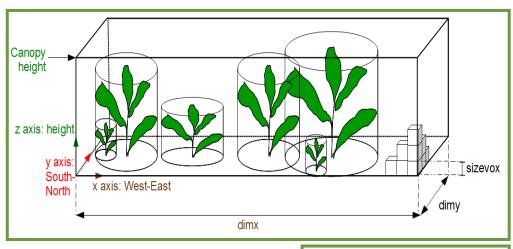
Response to environment

Competition

1 plant = 1 cylinder

«Individual-based» model

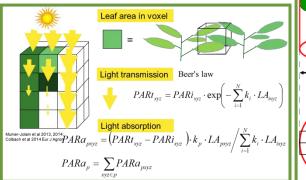




The virtual field FLORSYS

Adapted from N. Colbach INRA

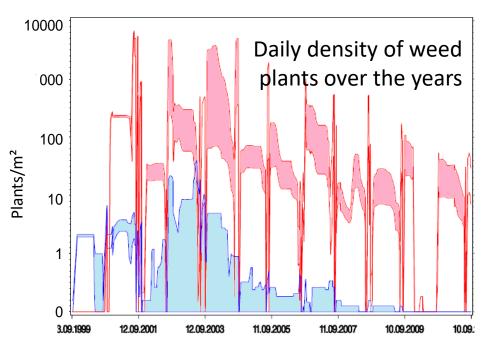
Generic life-cycle valid for both crop and weed annuals



Species or variety = combination of traits

- x seed mass
- x relative growth rate
- x base temperature
- x specific leaf area at stage i
- x change in SLA when shaded

For each plant and day



Outputs of FLORSYS model

Adapted from N. Colbach INRA

Yield and weeds

Benefits

Plant biodiversity

- Ressources

Less environmental * impacts (N, erosion...)

Harmfulness

Yield losses

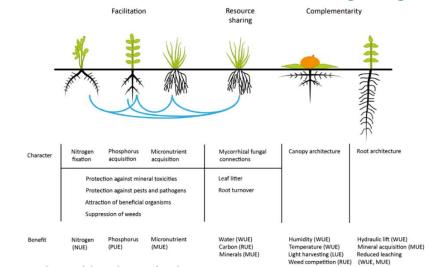
- Herbicide use
- Promosion of parasites

Crop production Yield

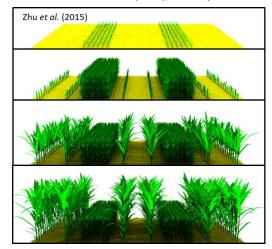
Enery production

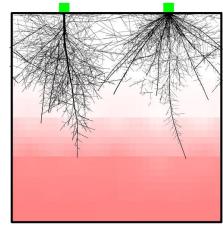
Some perspectives for FLORSYS

- Search for ideotypes for multiperformant weed management
 - Identify for contrasting cropping systems, ideal combinations of crop and mixture traits to ≠ weed management objectives (low yield loss or herbicide use)
- Search for multiperformant weed management strategies
 - Identify for these ideotypes ideal crop management strategies with optimization algorithms using FLORSYS
- Multicriteria evaluation of varieties and mixtures
 - Test varieties and mixtures x cropping systems proposed by experts with FLORSYS simulations
- Sensitivity of weed management strategies to climate change
 - Simulate the best options with future weather scenarios


Adapted from

J. Evers & N. Anten Wageningen

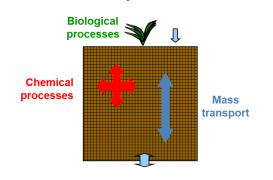


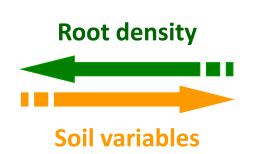

Functional-structural plant (FSP)

- FSP models are suitable tools to
 - Capture interactions between species above and belowground
 - Capture these interactions regarding acquisition of light, water, N and P
- Need for generic FSP model for improved mechanistic understanding

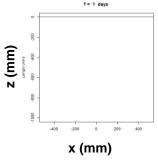
Brooker et al. (2015), New Phytol

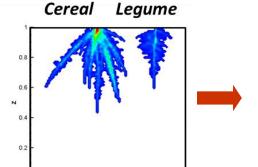
De Vries et al. (unpublished)

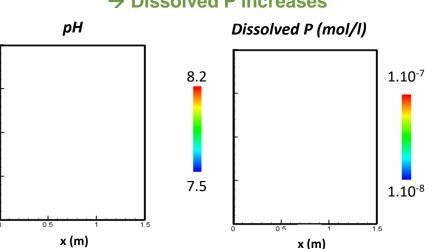




Root architecture & reactive transport


Adapted from Gérard F. et al. (2017) Plant & Soil 413, 161-180.

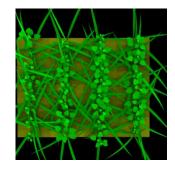

Reactive transport model Min3P

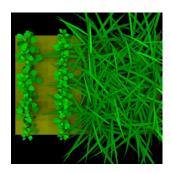


P acquisition facilitated in intercrop

Need for coupling with aboveground plant model

Rhizosphere acidification → Dissolved P increases





Towards a generic FSP model

- To explore and analyse
 - functioning and performance of mixtures
 - plant traits, planting patterns, virtual G*E*M
- Able to capture plant-plant interaction by simulating mechanisms
 - Plant growth based on C & N capture
 - Competition for resources above & below
 - Plastic responses to neighbour presence
 - Non-resource plant communication
- The model must be
 - Calibrated and tested on experimental data
 - Roots is a challenge

Contribution of modelling to intercrops

- Tool for diagnosing Intercropping functioning
 - Describes mechanisms
 - Growth, effects of stress and competition
 - In dynamic and with interactions
- Tool for virtual experiment
 - Evaluation of impacts of certain factors or techniques
 - Allowing access to outputs difficult to measure
 - In various pedoclimatic conditions
 - Climatic series, cross conditions medium / technical practices combination

Current limitations of modelling

- Limiting factors not formalized in the model(s)
 - Elements (P, K, S,...)
 - Pests (fungi, insects, weeds...)
- Extension or translation of the domain of validity and scope of the model(s)
 - New environmental conditions (low N mineral levels, high temperatures, ...)
- Evolution of model(s) towards
 - Taking into account new processes
 - A complexification of modelled systems (ex: pests)
 - New uses

Model	Availability for species mixtures	Comments	Pests	Cropping practices taken into account
FSPM	×	Linkage between soil and aerial modules to be done	No	Sowing rate and date, spatial pattern
STICS	V	Improvements needed	No	Crop management plan. E.g.: sowing rate and date, tillage, fertilization
IPSIM	*	To be developed	Weeds, diseases, animal pests	Cropping system: crop sequence and crop management plan
FLORSYS	V	Light submodel parameterized. N and H20 submodel to be developed	Weeds	Cropping system: crop sequence and crop management plan
WEEDLC	V	To be parameterized	Weeds	Weed management

- → Nobody is perfect, neither models
- → A model doing everything is utopia
 - → Modelling is a complementary approach to experimentation