

POLJOPRIVREDNI FAKULTET UNIVERZITET U NOVOM SADU

PFNS

DEPARTMAN ZA RATARSTVO I POVRTARSTVO

Università DEGLI STUDI FIRENZE

DISPAA

DIPAR"IMENTO DI SCIENZE DELLE PRODUZIONI AGROALIMENTARI E DELL'AMBIENTE

Universität für Bodenkultur Wien

BOKU

DEPARTMENT FÜR WASSER-ATMOSPHÄRE-UMWELT

European Commission

Horizon 2020

EUROPEAN UNION FUNDING FOR RESEARCH & INNOVATION

Summer School 2017

A_gM_{net}⁺ INTERNATIONAL SUMMER SCHOOL IN AGROMETEOROLOGY AND CROP MODELLING 2017

AquaCrop the FAO crop-model to simulate yield response to water

Anna Dalla Marta Filiberto Altobelli

University of Firenze, Italy CREA-PB, Rome

Literature

© FAO, 2011. AquaCrop Reference Manual. Chapters 1-2-3.

http://www.fao.org/nr/water/aquacrop.html

http://www.fao.org/land-water/databases-and-software/aquacrop/en/

AquaCrop

AquaCrop is a crop water productivity model developed by the Land and Water Division of FAO

It simulates **yield response to water** (relation between crop yield and water stress) of herbaceous crops, and is particularly suited to address conditions where water is a key limiting factor in crop production.

AquaCrop is essentially a crop water balance model

It attempts to balance accuracy, simplicity, and robustness:

- Relatively small number of explicit parameters and input
- Plant physiological processes
- Soil water budgeting processes

- Need of quick information (near real time) about what is happening in a given situation or what will change in the system as a result of perturbative events (scenario analysis)
- Limited resources for direct observations (especially on regional scale assessments)

Field experiments or simulation

We are interested in the field in which the plant is cultivated

Plant production is strongly determined by soil conditions: INTERACTIONS

AquaCrop looks at the interactions between crop and the soil

Field with plant

Soil (conditions)

Management

- field

Interactions

- irrigation

AquaCrop calculation scheme

1 - Crop development

3 - Biomass production

2 - Crop transpiration

4 - Yield formation

AquaCrop calculation scheme

1 – Crop development

CC

2 – Crop transpiration (Tr)

WP*

3 – Biomass production (B)

HI

4 – Yield formation (Y)

Soil Water Balance

Considering input and output water fluxes the amount of water retained in the root zone and the root zone depletion are calculated

The effect of water stress is described by stress coefficients Ks

Ks = 1 no stress \rightarrow upper threshold of root zone depletion Ks = 0 max stress \rightarrow below threshold of root zone depletion

Processes affected:

- green canopy expansion
- transpiration
- senescence
- harvest index
- root deepening

Real transpiration based on soil water content

Optimal transpiration based on actual CC

AquaCrop applications

- Crop responses to environmental changes
- WP optimization
- Yield gap analysis
- Determination of irrigation requirement
- Support to policy (comparing different scenarios)
- Impact assessment (climate change)