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Water & Nitrogen

 The two limiting factors for crop growth that are most responsive to 

management practices are the supply of water and nitrogen. 



Soil Water Balance

 Basis of a soil water balance is the simple statement of the 

conservation of water in soil

 change in soil water content 

= water in – water out

= precipitation + irrigation + runon

- runoff – drainage – transpiration – evaporation

 This can be applied over any block of soil and any time scale



Soil Water Balance

 Simulation of the soil water balance (as in APSIM SoilWat) is based 

on the different components of the water balance
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Soil Water Balance

 Characterizing soil water properties
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 SAT (saturation)

 DUL (drained upper limit)
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Soil Water - Runoff

 Precipitation has to be partitioned into what infiltrates into the top 

soil layer and what runs off

 Runoff is calculated using the USDA Soil Conservation Service (SCS)

procedure known as curve number technique

 Based on total precipitation for the day – no allowance for number of 

storms or rainfall intensity

 Curve numbers have been derived from experimental data and depend 

on:

- soil type 

- land use (row crops, contoured, terraced)

- antecedent rainfall condition 



Soil Water - Runoff

 Surface residues affect movement of water during runoff events.  

Curve number is adjusted according to amount of crop and residue 

cover
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Soil Water - Evaporation

 Soil evaporation occurs in two stages –

 In 1st stage, the soil is sufficiently wet for water to be transported to the 

surface to keep up with potential atmospheric evapotranspiration (based on 

Priestly and Taylor approach)

 In 2nd stage, transport of water to the surface can’t meet potential.

 In SoilWat2 this behaviour is described by two parameters:

U – the cumulative evaporation (mm) before actual evaporation falls 

below potential

CONA – 2nd stage evaporation is described as square root of time 

(days) since 2nd stage commenced and CONA is the coefficient

 Water lost by evaporation is only removed from the surface layer which can 

be dried out to the Air Dry moisture content



Soil Water - Evaporation

 Cumulative soil evaporation through time for 

U = 6 mm and CONA = 3.5
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 The evaporation loss is linear against time until cumulative loss 

exceeds U, beyond which it is calculated as CONA * (t –t1)1/2.



Soil Water - Saturated Water Flow

 Cascading water balance model

 When soil water content in any layer exceeds DUL, a fraction 

(SWCON) of the excess drains to the next layer

FLUX = SWCON x (SW_dep – DUL_dep)

 SWCON is the fraction of the water that drains.  It can be set to 

have different values in each layer.

 Typically in clay soils SWCON has low values (0.2) while in a free 

draining sand a higher value would be used (0.7)

 Any water in excess of SAT automatically cascades to the next layer



Soil Water - Unsaturated Water Flow

 When water content is below DUL, movement of water depends on 

water content gradient between adjacent layers and the soil’s 

diffusivity.

FLOW = DIFFUSIVITY x SOIL WATER GRADIENT

 Unsaturated flow can move water either up or down in the profile 

(saturated flux is only downwards). 

 But it can’t move water out of the bottom layer.  In SoilWat2 

drainage from the deepest layer can only occur when this layer wets 

up above DUL.



Soil Water – Solute Movement

 Solutes are moved together with water for both saturated and 

unsaturated flow.

 Nitrate-N is a mobile ion whereas ammonium-N is considered to 

be immobile.  Other solutes that are to be redistributed as mobile 

must be specified in the SoilWat2 INI file (eg chloride, TDS)

 SoilWat2 uses a simple “mixing” algorithm to calculate the 

redistribution of solutes between layers.  All water and solute 

entering a layer is completely mixed with water and solute already 

present to derive an average concentration.

 The water that leaves the layer is at a concentration that is 

proportional to this average concentration.



Soil Water

 There are other approaches!

 Soil physicists describe soil water behaviour in terms of soil water 

potential and the movement of water in terms of

differential equations (Richards’ Equation)…… which can be 

solved simultaneously.

 An APSIM module (SWIMSOIL) is available and provides an 

efficient numerical solution of Richards’ Equation.

 It’s main users would be those interested in surface soil condition 

and solute movement (e.g simulating soil/groundwater salinity).

 Not generally used for agronomic applications



SWIM Module – Soil Water Infiltration and Movement

 Developed by CSIRO Division of Land & Water

 Based on a numerical soluation of the Richards´ equation and the advection-

dispersion equation

 Components of soil water and solute balances (SWIM ver 2.1; Verburg et al. 1996)



SWIM Module

 SWIM simulates

 One-dimensional layered soil profile (vertically inhomogenous but 

horizontally uniform

 Saturated/unsaturated conditions

 Surface ponding (high rainfall intensities)

 Surface runoff (remove excess water)



 Water flows down a hydraulic gradient at a rate proportional to 

the gradient (Darcy‘s law): 

dx

dH
Kq 

q = water flux density (cm3 water/cm2 soil/h)

K = hydraulic conductivity (cm water/h)

H = hydraulic head (cm water)

x = soil depth (cm)

 Combinig Darcy‘ equation with the continuity equation to conserve 

mass of water

q
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t x
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θ = volumetric water content (cm3/cm3)

t = time (h)

S = source/sink strength (cm3 water/cm3

soil/h)

Water Movement in Soil



Water Movement in Soil

 Richards‘ equation
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 Hydraulic head (H) is the sum of gravitational potential (z) and the 

matric potential (ψ)
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 θ and ψ are related by the water retention curve.

 K is related to θ by the hydraulic conductivity function. 



Water Movement in Soil

 Water retention curve
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Hydraulic Conductivity Function



Hydraulic Conductivity & Soil Water Potential



 The soil profile is represented by a series of nodes

 Water retention curve:

 Instead of relating θ and ψ directly, SWIM uses a normalised 

parameter S, effective saturation

( )
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
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

S = effective saturation (cm3/cm3)

θr = residual vol. water content 

(cm3/cm3)

θs = saturated vol. water content 

(cm3/cm3)

 Campbell equation (CropSyst):

S(Ψ) = (Ψ / Ψe)
-1/b

Ψe = air entry potential (cm)



SWIMSOIL Parameters

 User-defined water retention and hydraulic conductivity functions

 HYPROPS generates a hydraulic property table

 This table is used by SWIMSOIL

Log10 ǀΨǀ

Volumetric water content θ

Slope of θ vs. Log10 ǀΨǀ

Log10 K

Slope of Log10 K vs. Log10 ǀΨǀ



Solute Transport

 The Advection-Dispersion Equation

 At macroscopic level: solute transport is a function of vol. Soil water 

content, solute concentration in solution, adsorbed concentration

 At microscopic level: differencess in pore water velocities lead to 

unequal solute movement in the direction of flow

 Solute transport goverened by ADVECTIVE and DISPERSIVE

 Advection (convection): movement of a solute with flowing water; 

depends on water flux

 Dispersion: quantifies the effects of mechanical dispersion and 

diffusion

 Diffusion: movement of solute molecules from higher to lower 

concentrations (little or no water flow); diffusion coefficient, tortuosity 

(ratio of actual to shortest path length for diffusion)



Solute Transport

 Solute transport parameters in SWIM

 Solute_name: TDS, Cl, NO3, NH4 etc.

 slupf: factor for solute uptake (TDS=0)

 slos: osmotic pressure per unit solute concentration 

(TDS=1.14); multiplied by solute concentration to 

calculate osmotic potential

 d0: diffusion coefficient in water (TDS=0.21)

 disp: used for calculating dispersion (TDS=1)

 a& athc: used for calculating tortuosity

 ground_water_conc: solute concentration in GW (ppm)

 Default_tds_conc: irrigation solute concentration (ppm) 



Plant Water Uptake

 Based on Campbell (1985) method: soil-plant-atmosphere 

continuum is a resistance network

 Soil matric potential, xylem potential

 Soil resistance of layer: a functionn of K, RLD, water uptake rate 

 Root resistance: resistance per unit length of root & root length density 

of each soil layer 

 Required input parameters

 min_xylem_potential (cm) 

 root_radius (mm)

 root_conductance


