

Application of different NWP products in agricultural production: Limits and efficacy

Ana Firanj Sremac & Branislava Lalic Faculty of Agriculture, UNS, Serbia

NWP products

1 Nowcasts			Descriptions of current weather parameters and descriptions of forecast weather
			parameters over the next 0-2-hours.
2	Very short-range		Descriptions of weather parameters over up to 12 hours into the future.
3	Short-range		Descriptions of weather parameters beyond 12 hours and up to 72 hours into the future.
4	Medium-range		Descriptions of weather parameters beyond 72 hours and up to 240 hours into the future.
5	Extended-range		Descriptions of weather parameters beyond 10 days and up to 30 days into the future. Typically averaged and expressed as departures from the climatological values for that period.
6	Long-range forecasts		From 30 days up to two years into the future.
6.1	Monthly outlooks		Descriptions of average weather parameters. Expressed as departures (deviations, variations, or anomalies) from the climatological values for that month (not necessarily the coming month).
6.2	Three-month or 90 day		Descriptions of the average values of weather parameters. Expressed as departures from the climatological values for that 90-day period (not necessarily the coming 90-day period).
6.3	Seasonal outlooks		Descriptions of the average values of weather parameters. Expressed as departures from the climatological values for that season.
7	Climate forecasts		Beyond two years.
7.1	Climate variability predictions		Descriptions of the expected values of climate parameters associated with the variations in inter-annual, decadal and multi-decadal climate anomalies.
7.2	Climate predictions		Descriptions of expected future climate conditions, including the effects of both natural and human driving factors.

Time and spatial scale

Used NWP products

- Short-range
 - Source NWP models: WorkEta, WRF-ARW
- Long-range forecasts (monthly, seasonal)
 - Source: ECMWF

An application of short-range weather forecast

- Select phenomena with adequate time step
 - plant dieses and pest
 appearance, phenology, frost
- Select adequate numerical tool
 - Disease and pest models, phenological models

An application of short-range weather forecast

- Effectiveness of short-term numerical weather prediction in predicting growing degree days and meteorological conditions for apple scab appearance.

 Meteorol. Appl. 23: 50–56.
- NWP used: TheWorkEta model, 4 day, 10 km resolution
- Growing dynamics, Disease model: BAHUS
 - Limit computational time
 - Efficiency small difference between 1,2,3,4 day forecast

Accumulated growing degree days

An application of short-range weather forecast

• Lalic et al. (2016) Effectiveness of short-term numerical weather prediction in predicting growing degree days and meteorological conditions for apple scab appearance. Meteorol. Appl. 23: 50–56.

- NWP used: TheWorkEta model, 4 day, 10 km resolution
- Growing dynamics, Disease model: BAHUS
 Limit computational time, orrography

Efficiency – small difference between 1,2,3,4 day forecast

- Firanj Sremac et al. (2016) The WRF-ARW application in predicting meteorological conditions for Downy mildew (Plasmopara viticola) appearance of wine grape. Abstract EMS, Trieste, Italy, 12-16 September 2016
- NWP used: WRF-ARW model, 4 day, 10 km
- Disease model: BAHUS (Müller's method)
 - Limit computational time, errors in precipitation
 - Efficiency only one day between predicted and observed

An application of monthly and seasonal weather forecast

- Select phenomena with adequate time step
 - Plant phenology (monthly), vegetation dynamics, biomass, yield
- Select adequate numerical tool
 - Crop model
- Ensemble forecast -> ensemble of phenology/ crop model outputs

An application of monthly and seasonal weather forecasting

Data sets – ensemble forecast

Observed average temperature for March 2017: 10.5 °C

Forecasted – control run temperature for March 2017: 10.8 °C

Forecasted – ensemble for March 2017, averaged by ensemble:

- 1. 10.1
- 5. 10.
- 9. 10.2

2. 11

- 6. 12.1
- 10. 11.1

- 3. 10.4
- 7. 10.5
- 11. 10.5

- 4. 10.9
- 8. 10.6
- 12, 10,1

Ensemble mean = 10.6 °C

An application of monthly and seasonal weather forecasting

First run – observed meteorology

Observed meteorology: Typical set for crop model

Calibrated and validated crop model

Crop model outputs: yield, biomass

One run per one ensemble member

VERIFICATION STATISTICS

$$RMSE = \frac{1}{N} \sqrt{\sum_{i=1}^{N} \left(\overline{A} - A_{OBS}\right)^{2}}$$

$$SPREAD = \sqrt{\frac{1}{n-1} \sum_{i=1}^{N} (\overline{A} - A(i))^{2}}$$

Ensemble statistics

$$RLD = \frac{\left| A_{CR} - A_{OBS} \right|}{A_{OBS}} \cdot 100\%$$

SERBIA FOR EXCELL

Control run statistics

SERBIA FOR EXCELL

IGNORANCE SCORE

p(Y) is a unitless probability density function of CMO

After calculating Ignorance for different crop model outputs, we can compare them.

- Lalic et al. (2017a) Testing efficacy of monthly forecast application in agrometeorology: Winter wheat phenology dynamic. IOP Conf. Ser.: Earth Environ. Sci. 57 012002
- ECMWF monthly forecast, MARCH-JUNE, 51 ensemble, 35 km resolution
- Crop model SIRIUS
 - Limit dependant on the position of the grid points
 - Efficiency small difference RMSE and SPRED for Tmin, Tmax, Yield, RS

Setting		RMSE	(°C)	SPREAD (°C)				
	M	A	M	J	M	A	M	J
$T_{ m min}$					min	•	•	•
Groß-Enzersdorf	2.9	1.6	1.0	0.8	1.2	1.1	0.9	0.7
Rimski Sancevi	1.3	1.2	1.0	1.6	1.2	1.2	0.9	0.7
	•	•	•	T	max	•		•
Groß-Enzersdorf	5.1	4.0	2.4	2.8	1.5	1.4	1.3	1.3
Rimski Sancevi	3.0	1.9	1.7	1.5	1.7	1.4	1.4	1.5

	ET (mm)	Max def. (mm)	Anthesis day	Maturity day	Biomass (t/ha)	Yield (t/ha)
Grossensdorf obs	395	187	149	190	14.859	6.989
Grossensdorf month	355	145	149	187	13.899	5.940
Novi Sad obs	425	136	139	181	14.473	6.006
Novi Sad month	379	143	139	179	14.478	5.920

- Lalic et al. (2017a) Testing **efficacy of monthly forecast** application in agrometeorology: Winter wheat **phenology dynamic**. *IOP Conf. Ser.: Earth Environ. Sci.* 57 012002
- ECMWF monthly forecast, MARCH-JUNE, 51 ensemble, 36 km resolution
- Crop model SIRIUS
 - Limit dependant on the position of the grid points
 - Efficiency small difference RMSE and SPRED, RS

- Lalic et al. (2017b) Seasonal forecasting of green water components and crop yields of winter wheat in Serbia and Austria. Journal of Agricultural Science, 1-17
- ECMWF seasonal forecast, MARCH-OCTOBER, 10-50 ensemble (depending on the year), 0.5° × 0.5° resolution
- Crop model: SIRIUS
 - Limit dependant on the position of the grid points, OB is larger than EA, CR
 - Efficiency small difference
 RMSE and SPRED

- Lalic et al. (2017b) Seasonal forecasting of green water components and crop yields of winter wheat in Serbia and Austria. *J. Agric.Sci*, 1-17
- ECMWF seasonal forecast, MARCH-OCTOBER, 10-50 ensemble (depending on the year), 0.5° × 0.5° resolution
- Crop model: SIRIUS
 - Limit dependant on the position of the grid points
 - Efficiency small difference RMSE Ignorance is £02.04; the model is very good, and if it is > 7.81, the model is not adequate.

- Lalic et al. (2018) Seasonal forecasting of green water components and crop yield of summer crops in Serbia and Austria. J. Agric. Sci, 1-15
- ECMWF seasonal forecast, MARCH-OCTOBER, 10-50 ensemble (depending on the year), 0.5° × 0.5° resolution
- Crop model: AquaCrop
 - Limit dependant on the position of the grid points, but in years with extremes EA closer to OB
 - Efficiency average Ignorance less then 3.

- Lalic et al. (2018) Seasonal forecasting of green water components and crop yield of summer crops in Serbia and Austria. J. Agric. Sci, 1-15
- ECMWF seasonal forecast, MARCH-OCTOBER, 10-50 ensemble (depending on the year), 0.5° × 0.5° resolution
- Crop model: AquaCrop
 - Limit dependant on the position of the grid points, and cultivar
 - Efficiency apart from some
 years in average Ign less than 3

$$GWF = \frac{10 \times \sum_{d=1}^{lgp} ET_d}{Yield}$$

- Lalic et al. (2018) Seasonal forecasting of green water components and crop yield of summer crops in Serbia and Austria. J. Agric. Sci, 1-15
- ECMWF seasonal forecast, MARCH-OCTOBER, 10-50 ensemble (depending on the year), 0.5° × 0.5° resolution
- Crop model: AquaCrop
 - Limit dependant on the position of the grid points, and cultivar
 - Efficiency average Ignorance less than 3 for all

