

POLJOPRIVREDNI FAKULTET UNIVERZITET U NOVOM SADU

PFNS

DEPARTMAN ZA RATARSTVO I POVRTARSTVO

Università DEGLI STUDI FIRENZE

DISPAA

DIPARTIMENTO DI SCIENZE DELLE PRODUZIONI AGROALIMENTARI E DELL'AMBIENTE

Universität für Bodenkultur Wien

BOKU

DEPARTMENT FÜR WASSER-ATMOSPHÄRE-UMWELT

European Commission

Horizon 2020

EUROPEAN UNION FUNDING FOR RESEARCH & INNOVATION Effects of Nitrogen Source on Production Potential of Intercropped Fenugreek and Buckwheat and Nitrogen Requirement of Wheat in Cropping System Rotation

Aliyeh Salehi

Workshop 2018

- Shahrekord University, Iran
- University of Natural Resources and Life Sciences, Vienna

Advisor: Dr. Mahmoud Reza Tadayon

Publications

- **1. Salehi, A.,** Fallah, S., Kaul, H.P. Zitterl Eglseer, K., 2017. Antioxidants and bioactive compounds in buckwheat seeds from fenugreek-buckwheat intercrops as influenced by fertilization. Food Chemistry. *Journal of Cereal Sciences*. In press. https://doi.org/10.1016/j.jcs.2018.06.004
- 2. Salehi, A., Mehdi, B., Fallah, S., Kaul, H.P., Neugschwandtner, R.W., 2018. Integrated fertilization of buckwheat-fenugreek intercrops improves productivity and nutrient use efficiency. *Nutrient Cycling in Agroecosystems*. 110: 407-425. https://doi.org/10.1007/s10705-018-9906-x
- 3. Salehi, A., Fallah, S., Kaul, H.P., 2017. Broiler litter and inorganic fertilizer effects on seed yield and productivity of buckwheat and fenugreek in row intercropping. Archive of Agronomy and Soil Science, 63: 1121-1136. https://doi.org/10.1080/03650340.2016.1258114
- **4. Salehi, A.,** Fallah, S., Neugschwandtner, R., Kaul, H.P. Mehdi, B., 2017. Biomass accumulation and growth analysis of fenugreek-buckwheat intercrops as affected by fertilization. *Die Bodenkultur*. In press.

Project objectives

Effect of intercropping and sole crop on yield and its components, bioactive compounds and nutrient use efficiency of fenugreek and buckwheat.

The response of sole crop and intercropping of fenugreek – buckwheat to nitrogen source (organic, chemical, integrated)

Effect of organic manure and chemical fertilizer on soil CO2 fluxes in sole crop and intercropping (fenugreek – buckwheat).

Relationship between soil CO2 fluxes and dry matter accumulation of fenugreek and buckwheat in sole crop and intercropping.

Measurements

- Dry weight and number of rhizobium nodules in fenugreek root
- ➤ Above ground dry matter (AGDM) at flowering stage
- Dry matter accumulation
- Nitrogen (N) and phosphorus (P) concentration and uptake (at flowering stage and maturity)
- Micro nutrient concentration and uptake in the seeds (Fe, Zn, Mn and Cu)
- > Applied N and P use efficiency (ANUE and APUE)
- Applied N and P recovery efficiency (ANRE and APRE)
- ➤ Land equivalent ratio (LER) for AGDM (LER-AGDM), N-LER and P-LER (in both AGDM and seeds)
- Photosynthesis pigments
- Canopy radiation interception and radiation use efficiency (RUE)
- Growth characteristics (CGR, RGR and etc.)

Measurements

- > Soil temperature and soil water content
- ➤ Soil CO₂ flux
- > Yield, yield components and harvest index
- Leaf area index (LAI)
- > Hectoliter weight
- ➤ Protein and bioactive compounds (Antioxidant activity, TFC, TPC, rutin, trogonelline and etc.
- Residual nutrients in soil (after the harvest of intercropping)
- Quantity and quality parameters of Wheat

A two-factorial experiment in randomized complete block design

Treatments

Fertilization

Intercropping ratio

Chemical fertilizer

Broiler litter

Integrated fertilizer (50% CF+50% BL)

Sole fenugreek

Sole buckwheat

Fenugreek: Buckwheat (2:1)

Fenugreek: Buckwheat (1:1)

Fenugreek: Buckwheat (1:2)

Results

CO2 flux-BL

At the early growth: Higher Soil CO2 flux was observed with CF: available N in urea

Lower Soil CO2 flux with organic manure at the early stages and higher at later: slow and gradual release of nutrients

The highest CO2 flux after organic amendment over the non-amended treatment can be attributed to the combined effects of available C substrate, soil temperature, moisture regimes and higher microbial activity, and other essential nutrients (P and N) for soil microorganisms available

Cumulative soil CO2- CF

Cumulative soil CO2-IF

Pearson correlation coefficient

جدول ٢-٦. ضرايب همېستگي يين خروج ٢٥٥ از خاک و تجمع ماده خشک شنېليله - گندم سياه.

مرحله هفئم	25	مرحله ششم	مرحان	مرحله ينجم	مرحل	مرحك جهارم	مرحل	4	مرطهموم	£	مرحله دوم	اول	مرحله اول	مراحل نموتميردارى
1795	17971	1895	1641	1446	1841	1446	1797	1896	1841	1149	1797	11798	1841	تجمع ماده خشك
m07/	_m v ₃ j.	, γ.γ	b.j/-	May -/ +-	.0/.	311. Y/	∇6/-	***\/.	•••\\\/·	4/44/108	٠٠/٧٤.	14.		مرحله أول
m 0//:-	1,49 list	-:/γ _®	./f4 ^{IB}	a √.	· 149th	mQ-/	: ∇6/·	mex/.	\\/\.	·/· ν	* 'A.Y.	a . ÷	. ∀	a, 44 cen
, į. y _m	-40/-	¥.	·101.	MOF.	• •	indui.	.66	·101	••• }\/.	*/rf ^{III}	• 4 <i>K</i> /·	mal.	. ≼	مرطه سوم
· rem	.16/-	M+41.	• FQ!	, 101·	10%	.161.	: 66i·	* v.	1.6	10 pt/.	***·	mal.	. PV.	大小子
· ffym	* y4.	.0	.196.	14.	. V0/-	 6λ/·	.66	· w.	٠/١٨٩.	· /F WIII	* 7V/.	m/m/.	.w.	and the
• (0/-	. V.4.	.60%	• • • • • •	. v.	· vo/-	. 'YY	• 04/·	: (W.	. iyyi.	"HAT!	: ≿	mak!	: 61/-	مرحله ششم
·10/·	* \/ \di.	· 16/·	***	. v.	• Y0/·	. ∇Υ/.	* 04/·	:	: 44	· 14411	* (V):	$v_{ij} = v_{ij} + v_{ij}$. VV.	مرحله هفتم
		2			1		سيستم تغذيهاي تلفيق	سيسته		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	2011	1	
such.	mbai.	a.≯.	m5//·	mak.	· jtv ^{IIS}	MAN.	Mari.	00/-	mil.	· /FY116	+ ITON	: T.	SI 1./.	مرحله لول
m.	II deli-	###/·	II YA	mer.	· if f ^m	in this	·/F) III	. VO/.	m.+/.	m4\$/.	Har.	:	No.	مرجله دوم
調し	* b.6/ ·	MV7/.	* y4.	MAT.	****	MALL.	** y4.	** YO!	: \\\/.	· /FA "	.60/-	: ¥.	•00/-	مرطامية
10/	· ///	**************************************	: · ×·	意と	** YAY!	Sulta.	* 0W.	* 46/	* W.	.00%	.60/-	: · v.	*15/	大小子
: Y61.	* W.	٠.	: 4W.	•00/-		· 101.	** y4.	· JAL	•16	* '/\$/'.	11 P.J.	. v.	* 15	مرحل ينتهم
* /W.	* v4.	* W.	****	. F0.	1. 6V/.	. YQ/ .	: V4:	****·	• 160	· AM.	· JFVIII	: Y4.	:	مرجله ششم
. 141	· W.	. 1/1	••04/-	. 40/·	-/Y	•40/·	76/	. W.	.181.	• 1/1/-	· JFVB	: 66(·	******	مرحله هفتم
			0.00		3		و تقذيفاي مرغي	13						
/Yens	madi.	m.///	-/YY ³⁸	≡VJ.	·/IV	M γγ.	silé W.	8	pvi.	*/XY _{BB}	Y6/·	.601.	SEA SE	مرحله أول
/K) as	NA.	m.//:-	11 L.	101.	MATE.	雅 1.	maal.	Su YAI'	. W.	a	:06/	.10/.	· rylis	مرحله دوم
/114'BS	M.F.V.	B. (/:	M. T.	.101.	· JYA'BI	M 07/.	maal.	sabal.	· AN.	men.	.60/	H.	Mg().	مرحله سوم
/· y ¹⁰	Mon.	M.1/.	• . i.	.60%	. (4)	雅.美.	.101.	MAAN.	. 16.	1/5 mil	· JAY	sudal.	-/·Vm	a dr stly
··· Yug	a VI	SELVA!	. V41.	.34.	: (X)·	# 07/·	*	STAM.	STAT.	· /FV ^{BS}	· And ma	MYA/.	# . 1	1 de 150
· IIVes	mall'.	mbA/.	.161.	. y.d.	. Y 4/·	9	16/-	· / Fr.88	*/184HB	0/-	m1.1.	141 mg	III T	مرحله ششم
e oro	m41/-	m/va/·	• 161.	: K.	: bd/.	00)	*\4/·	·/fv#8	-/10 ⁰⁸	•001.	*****	, /1A ¹⁰⁸	1,70 m	مرجله وفتر

٥١٦ * . ** *** يه ترتيب نشانكر عدم معنى داري. معنى دار يودن در سطح احتمال ۵ درصد. ۱ درصد و ۱/۰ درصد ميياشند.

IR>Sole: 25% (2014) & 20% (2015)

Sole F> Sole B, F:B (2:1): 1.31 g/MJ (2014)& 1.41 G/MJ (2015)

BL>CF: 12% (2014) & 17% (2015)

Antioxidant activity

Conclusions

➤In overall, this study showed a potential benefit of intercropping for production of fenugreek (legume) and buckwheat (non-legume) medicinal plants under application of organic fertilizers (IF and BL), which proved to be a suitable alternative for chemical fertilizers.

Conclusions

- Therefore, the strategy of intercropping and organic fertilizers application, in addition
- to increase of quantity and quality of fenugreek and buckwheat medicinal plants,
- increasing of fertilizer efficiency,
- reducing nutrient losses from the soil,
- producing healthy food,
- improving human health,
- reducing the environmental risks and reducing the effects of climate change
- can successfully contribute to improving the quantity and quality of the subsequent crops in a rotation and decrease chemical fertilizer requirement as well.

For determination of soil respiration (CO2 production),

- three 1.8 I plastic jars were randomly inserted 3 cm into
- the surface soil of the rows in each plot.
- The jars had an open bottom and sealed top and were left in the soil for the course of the study.
- For collection and determination of CO2 absorption, each jar contained a plastic vial containing 20 ml 1 M NaOH.

The rate of CO2 evolved was measured from the soil using 0.25 N HCl after precipitating the carbonate with a BaCl2 solution by back-titrating the alkali (Alef and Nannipieri, 1995). CO2 evolution was expressed as mg CO2-C m-2 soil.