

POLJOPRIVREDNI FAKULTET UNIVERZITET U NOVOM SADU

PFNS

DEPARTMAN ZA RATARSTVO I POVRTARSTVO

Università DEGLI STUDI FIRENZE

DISPAA

DIPAR"IMENTO DI SCIENZE DELLE PRODUZIONI AGROALIMENTARI E DELL'AMBIENTE

Universität für Bodenkultur Wien

BOKU

DEPARTMENT FÜR WASSER-ATMOSPHÄRE-UMWEIT

European Commission

Horizon 2020

EUROPEAN UNION FUNDING FOR RESEARCH & INNOVATION

Workshop 2018

Greenhouse gas and ammonia emissions from soil: the effect of organic matter and fertilization method

Leonardo Verdi

Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence

INTRODUCTION

Emissions from Global agricultural sector accounts for:

- Main sources are represented by **fertilization**, **intense livestock systems** and **fuels**
- Nowadays, low-impact agricultural management strategies are a hot topic
- Digestate is by-product of biogas production process and represents an alternative to mineral fertilizers due to the high N-easily available for crops (NH₄⁺)
- **Compost** from organic fraction of municipal solid waste (**OFMSW**) is a solution for organic wastes re-used as fertilizer (85% of total N is represented by organic N)

Greenhouse gas and ammonia emissions from soil: the effect of organic matter and fertilisation method

Leonardo Verdi, ¹ Marco Mancini, ¹ Mirjana Ljubojevic, ² Simone Orlandini, ¹ Anna Dalla Marta ¹

¹Department of Agrifood Production and Environmental Sciences, University of Florence, Italy; ²Department for Fruit Growing, Viticulture, Horticulture and Landscape Architecture, Faculty of Agriculture, Novi Sad, Serbia

Correspondence: Leonardo Verdi, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy. Tel.: +39.055.275.5741. E-mail: leonardo.verdi@unifi.it

MATERIALS AND METHODS

- 3 replicates
- 2 organic matter levels: **OM1** (1,3%) **OM2** (4,3%)
- 4 treatments: Control (no fertilization)

Digestate (liquid fraction, pig slurries)

Urea

Compost (organic fraction of municipal solid waste)

- 18 pots (volume 8 L)
- Fertilization rate **150** Kg N ha⁻¹
- 2 irrigations (10 mm each)

	Urea	Digestate	Compost
N content Total %	46	0.319	2.27
N-NH ₄ + %	-	0.284	0.15
N-NO ₃ -%	-	0.035	0.0013
P content Total %	-	1.84	0.34
K content Total %	-	6.94	0.97

MATERIALS AND METHODS

RESULTS

	kg CO ₂ -C ha ⁻¹		kg CH ₄ -C ha ⁻¹		kg N₂O-N ha ⁻¹		kg NH ₃ -N ha ⁻¹	
	OM1	OM2	OM1	OM2	OM1	OM2	OM1	OM2
No-fertilizer	38,50 ^g	129,19 ^e	8.06 ^d	8.06 ^d	0.04 ^c	0.31 ^{bc}	0.00 ^e	0.06 ^{de}
Digestate	604,12 ^b	679,75°	15.07ª	12.65 ^b	0.96 ^b	7.65ª	0.61 ^b	0.59 ^b
Urea	67,04 ^f	206,67°	8.95 ^d	11.17 ^{bc}	0.09 ^c	0.29 ^{bc}	0.09 ^{de}	1.15ª
Compost	29,22 ^h	169,35 ^d	9.62 ^{cd}	8.38 ^d	0.03 ^c	0.38 ^{bc}	0.26 ^{cde}	0.54 ^{bc}

RESULTS

CONCLUSIONS

- In the bare soil experiment GHGs emissions can be overestimated (absence of crop)
- Organic Matter plays a key role on GHGs and NH₃ emissions from soil enhancing bacteria activity
- Digestate and Compost produce higher CH₄ emissions from OM1 than OM2
- Compost is able to mitigate environmental impacts of fertilizers (reduction of CO₂ and NH₃ emissions than Urea)
- Further experiments on field scale are required for a more in depth understanding of emissions dynamics

AND MORE...

• Bachelor thesis was wrote with the support of Professor Branko Cupina and Dr. Svetlana Vujic of PFNS on "The role of intercropping on Nitrogen availability in agriculture"

AND MORE...

 a scientific publication is in progress between DISPAA and PFNS on the topic of Nitrogen emission losses and Nitrogen Use Efficiency from different cover crops

