

POLJOPRIVREDNI FAKULTET UNIVERZITET U NOVOM SADU

PFNS

DEPARTMAN ZA RATARSTVO I POVRTARSTVO

Università DEGLI STUDI FIRENZE

DISPAA

DIPARTIMENTO DI SCIENZE DELLE PRODUZIONI AGROALIMENTARI E DELL'AMBIENTE

Universität für Bodenkultur Wien

BOKU

DEPARTMENT FÜR WASSER-

European Commission

Horizon 2020

EUROPEAN UNION FUNDING

Workshop 2018

Potential of photographs digitalization and thermal imaging for plant studies

Oswald Sandro¹, Weihs Philipp¹, Putnik-Delić Marina², Danicic Milena² und Maksimovic Ivana²

- 1) Department of Water, Atmosphere and Environment, BOKU, Vienna, Austria
- 2) Poljoprivredni fakultet Univerzitet u Novom Sadu, PFNS, Novi Sad Serbia

- Research topics of Working group atmospheric radiation (BOKU)
 - Radiation modelling
 - Ground based remote sensing
 - Energy balance of streams
 - Urban energy balance modelling
 - 3-D radiation modelling and Ray Tracing

Potential of photographs digitalization and thermal imaging for plant studies

- 1. Introduction (Physical background, Methods)
- 2. Drought stress experiment
- 3. Analysis of webcam images for phenological studies
- 4. Combination of images with Ray Tracing modelling
- 5. Conclusion

Creation of visible images (RGB red, green, blue principle)

1 Channel single color radiant intensity distribution

DIGITALIZATION OF PHOTOGRAPHS

BLUE CHANNEL (0.45 µm)

GREEN CHANNEL (0.55μm)

RED CHANNEL (0.67μm)

DIGITALIZATION OF PHOTOGRAPHS

PHOTOGRAPH BLUE (0.45 μm) PHOTOGRAPH GREEN (0.55μm) PHOTOGRAPH RED (0.67μm)

Tomato plants (Solanum lycopersicum) with different types of water amount treatments

Treatment 1 (L1) well watered (900 ml/d)

Treatment 2 (L2) medium water stress (600 ml/d)

Treatment 3 (L3) strong water stress (300 ml/d).

Additionally extreme treatment level of no watering. Three plants in shade not watered for one day.

A) Introduction: Thermal emission

THERMAL INFRARED CAMERA

Measures Longwave emission of object and calculates the surface temperature following Stefan Boltzman law and assuming an Emission coefficient of the object

MEASUREMENTS

Compare the leaf temperature with air temperature

10.00 9.00 8.00 7.00 Temp. diff. 6.00 5.00 4.00 3.00 2.00 1.00 0.00 16:00 10:00 8:15 12:00 14:30

Stalk in shade

Stalk temperature
Difference to air temperature
stalk T. – air T.

2. Drought stress experiment 1 no stress, 2 moderate stress, 3 strong stress, 4 extreme Leaf temp. – air temp

Leaves in shade					
Time [CEST]	1. row	2. row	3. row	last row	
08:15	-0.62	-0.82	-0.72	-1.32	
12:00	-0.89	-0.99	0.11	1.91	
14:10	-1.30	3.50	3.60	3.80	
15:45	1.00	3.20	3.10	6.40	
09:05	0.61	-0.49	0.71	2.71	
10:50	-0.18	-0.78	0.82	2.22	
12:50	-0.99	3.01	3.71	2.61	
14:30	-0.17	2.23	4.03	5.43	
16:00	-0.19	0.41	2.31	4.81	
10:00	-1.53	-0.93	-1.13	1.57	
	-0.43	0.83	1.65	3.01	

i terrip	Leaves	in sun	
Time [CEST]	1. row	2. row	3. row
08:15	2.18	2.48	2.28
12:00	3.11	2.61	3.11
14:10	3.10	6.70	5.50
15:45	6.40	6.10	8.20
09:05	3.01	1.61	2.31
10:50	0.42	1.92	2.92
12:50	0.91	5.11	5.61
14:30	2.23	5.43	6.63
16:00	1.71	3.01	3.11
10:00	1.67	0.67	2.27
	2.47	3.56	4.19

Stalk in shade						
Time						
[CEST]	1. row	2. row	3. row	last row		
08:15	1.08	1.28	0.88	1.08		
12:00	4.31	3.21	1.91	2.51		
14:10	3.60	4.10	4.30	5.10		
15:45	5.30	4.80	5.90	9.20		
09:05	2.71	2.51	3.21	3.11		
10:50	1.62	2.72	2.52	2.62		
12:50	3.51	4.41	4.21	3.51		
14:30	2.63	3.23	4.63	5.53		
16:00	2.51	2.21	3.31	6.71		
10:00	0.87	0.87	0.17	1.67		
	2.81	2.93	3.10	4.10		

	Stalk	c in sun	
Time [CEST]	1. row	2. row	3. row
08:15	3.38	3.08	3.28
12:00	4.61	5.11	4.91
14:10	4.50	7.60	5.30
15:45	5.50	7.00	6.30
09:05	6.01	3.61	5.11
10:50	3.72	3.42	4.12
12:50	4.01	5.51	6.01
14:30	3.83	6.03	6.43
16:00	3.51	5.41	4.41
10:00	2.57	2.77	3.77
	4.16	4.95	4.96

Energy balance equation + Peymann Monteith equation

$$T_{\rm o} - T_{\rm a} = \frac{r_{\rm a}}{\rho_{\rm a} c_{\rm p}} \frac{(R_{\rm x} - G) \gamma (1 + r_{\rm s}/r_{\rm a})}{\Delta + \gamma (1 + r_{\rm s}/r_{\rm a})} - \frac{\rm VPD}{\Delta + \gamma (1 + r_{\rm s}/r_{\rm a})}$$

 $T_o =$ Temperature at the surface level (°C)

 $T_a = Air temperature (°C)$

 r_a = aerodynamic resistance (s/m)

 r_s = surface resistance (s/m)

 $R_n = Net radiation (W/m^2)$

G = Soil heat flux (W/m²)

 ρ_a = air density (kg/m³)

 c_p = specific heat at constant pressure (J./(kg. $^{\circ}$ C))

 γ = psychrometric constant (Pa/°C)

 Δ = slope of the saturated vapour pressure vs. Temperature curve (Pa/°C)

VPD = vapour pressure deficit at the reference level (Pa)

Usually lower baseline (fully watered crop)

$$T_0 - T_0 = a - b \text{ VPD}$$

Upper baseline (drought stressed crop: stomata closed)

$$T_{o} - T_{a} = \frac{r_{a}}{\rho_{a}c_{p}}(R_{n} - G) = a'$$

 T_0 = Temperature at the surface level (°C)

 $T_a = Air temperature (°C)$

VPD = vapour pressure deficit at the reference level (Pa)

 $R_n = \text{Net radiation (W/m}^2)$

G = Soil heat flux (W/m²)

 ρ_a = air density (kg/m³)

 c_p = specific heat at constant pressure (J./(kg.°C))

CWSI Crop Water Stress Index

Calculation:

$$CWSI = [(Ts - Ta) - D2] / (D1 - D2)$$

- Ts: canopy temperature
- Ta: air temperature
- D1: max difference of plant temp (Ts) and air temp (Ta) (e.g. +3 °C)
- D2 = A + B* AVPD (AVPD: Atmospheric vapour pressure deficit)

Conditions for measuring canopy temperature:

- ✓ optimal time: at noon crop is experiencing maximum diurnal stress levels
- ✓ cloudless days: changes of solar radiation intensity cause fluctuation of temp three times higher then soil water changes (*Roth et al. 2004*)
- ✓ density of plants: at vegetative growth still influence of soil temp.!!

Further calculations to detect plant stress

Last row – 28.5.

Last row – 29.5.

Detect green colour

Last row – 28.5.

Last row – 29.5.

Calculate center of plant and the minor axis of the ellipse (red) using plantCV software (Gehan et al., 2017)

Last row – 28.5.

Last row – 29.5.

Possible next steps for drought stress experiment:

- Accuracy of thermal IR camera??
- Test the PlantCV software for other plants

3. Analysis of webcam images for phenological studies

3. Analysis of webcam images for phenological studies

p1 philipp, 26/06/2018

Threshold = 130

Threshhold = 150

Threshold = 150, remove blue sky

Threshold = 130

3. Analysis of webcam images for phenological studies

Next steps:

Problems with scene illumination: test different correction algorithms (e.g. Sonnentag et al., 2012)

Pixel(R,G,B) = Pixel(R*3*255/T, G*3*255/T, B*3*255/T)

Where T = R + G + B

R = pixel in red channel (1 - 255)

G = pixel in green channel (1 - 255)

B = pixel in blue channel (1 - 255)

4. Combination of images with Ray Tracing modelling

4. Combination of images with Ray Tracing modelling

4. Combination of images with Ray Tracing modelling

Calculation of reflected radiance towards observer in the red, green, blue channels:

- 50 cm digital elevation map of Vienna
- Reflectance in red, green and blue at the respective pixels

ļ

Radiation model which calculates incident radiation and reflected radiance towards observer => ground reflectance field

Radiative transfer model (Ray Tracing) which takes atmospheric effects into account

Combine 3 RGB channels to make a visible picture

Hymap: Bildflug vienna4, 21.6.2005, Bandkombination 24/17/8

4. Combination of images with Ray Tracing modelling

Possible next steps:

Use Ray Tracing for retrieval of plant characteristics

Include energy balance model to investigate small scale effects using imaging information

Figure 3: Simulated spectra for rainfed wheat compared to FieldSpec measured for varying canopy variables

D) First preliminary results: comparison CWSI with simulated lower baseline and with measured lower baseline

D) First preliminary results: crop water stress index using energy balance method

A) Introduction: Crop water stress index

This method is however used only during cloudless conditions

A) Introduction: Other method for CWSI calculation

Energy balance method (Alves and Pereira, 2000):

$$T_{s} - T_{w} = \frac{\gamma}{\Delta + \gamma} \frac{r_{a}}{\rho_{a} c_{p}} (R_{n} - G)$$

 T_s = Temperature of the leaf (°C)

 T_w = Wet bulb temperature (°C)

 R_n = Net radiation (W/m²)

G = Soil heat flux (W/m²)

 ρ_a = air density (kg/m³)

 c_p = specific heat at constant pressure (J./(kg.°C))

 γ = psychrometric constant (Pa/°C)

= slope of the saturated vapour pressurevs.Temperature curve (Pa/°C)

Possibility to calculate CWSI for cloudy conditions?

A) Introduction: Conditions for determination CWSI

Requirements for conditions of measurements?.

A) Homogeneous canopy over a length of 200 m to avoid fetch effect.

B) Sensors should always look at the sunlit leaves since the energy of the sun strongly influences the leaf temperature

A) Introduction: Study area Augarten

A) Introduction: Study area Augarten

Problem with site and experiment

A)Fetch effect

Size of plot is 4x6 m. Ideal conditions required 200 m homogeneous field

B) Sensors are oriented towards east and towards west.
Shading effects not ideal for measurements

B) Objectives of the study

- Is it possible to calculate a CWSI for non ideal conditions (cloudy, fetch effect, non ideal orientation of the sensors)?
- Is it possible to obtain a lower baseline for these conditions?
- Correlation with soil water content and plant physiological measurements?

C) Material and methods: measurements

Measurements

- Thermal measurement with CIR-5, continuously during the whole vegetation period of the wheat: 15/05 – 17/07 2006, measuring canopy temperature of two wheat plots (irrigated and rainfed) at the study test-site 'Augarten' (Vienna, Austria)
- Meteorological data: air temperature, humidity, radiation (continuously)
- Volumetric soil water content measurements, TDR probes in 10, 20 and 40 cm depth (continuously)
- Physiological parameter: actual leaf conductance, leaf water potential, leaf osmotic potential, relative water content (at the three growth stages)

C) Material and methods: Weather conditions

TEMPERATURE AND PRECIPITATION DURING THE MEASUREMENT PERIOD

C) Material and methods: Physiological measurements

			$\Psi_{ m w}$ 4		Ψ_{π}	g		٤	g _L LS	
		ir	rf	ir	rf	ir	rf	ir	rf	
predawn	vegetative	-1.8	-1.9	-10.1	-11.5***					
	flowering	-2.4	-4.6***	-13.4	-13.4					
	grain filling	-6.8	-11.3***	-13.0	-14.9***					
midday	vegetative	-6.8	-7.8	-11.7	-13.4***	541.4	364.2**	601.1	177.0***	
	flowering	-17.2	-20.1*	-18.5	-18.7	632.7	523.2**	568.7	361.1**	
	grain filling	-18.3	-19.9	-15.6	-17.1*	721.0	537.4**	609.1	328.5***	

Summary of results from physiological measurements.

Abbreviations: ir: irrigated; rf: rainfed;

 $\Psi_{\rm w}$: leaf water potential [bar];

 Ψ_{π} : leaf osmotic potential [bar];

RWC: relative water content [%];

g_L: leaf conductance [mmol.m⁻².s⁻¹]; US: upper leaf surface; LS: lower leaf surface. Significance levels refer to the differences between rainfed and irrigated plants. ***: $p \le 0.001$; **: $p \le 0.01$; *: $p \le 0.05$; n=5-30.

D) First preliminary results: leaf temp. of irrigated plots using energy balance method

D) First preliminary results: leaf temp. of irrigated plots: classical Idso method (with vapour pressure deficit)

Only from 12h00 to 15h00, all sky conditions

D) First preliminary results: comparison of leaf temp. of watered plots using energy balance method and Idso meth.

D) First preliminary results: comparison of leaf temp. of watered plots using energy balance method and Idso meth.

D) Preliminary results: first statements

Energy balance method is more accurate than method by Idso for the determination of lower baseline for all sky conditions

D) First preliminary results: leaf temp. of watered plots using energy balance method

Day of year

D) First preliminary results: lower and upper baselines

D) First preliminary results: lower and upper baselines

D) First preliminary results: wind effect on determination of leaf temperature

D) First preliminary results: orientation effect on determination of leaf temperature

D) First preliminary results: orientation effect radiation balance vs global irradiance reference

